


Welcome to the meeting. We will begin shortly.

If dialing in by phone, enter #, your Audio PIN, then #

Type your question into the text field under "Questions"







# **Learning Objectives**

- Recognize how registry data can be used for facility benchmarking and quality improvement.
- Explain the connection between entering accurate, complete, and timely data for maximizing the value of registry participation.
- Upload complete data into the NMD and resolve validation and rejection errors to maximize the value of registry participation.



### **Moderator**



**Zach Smith**Sr. Quality Programs Assistant, ACR



# **Speakers**





Robert D. Rosenberg, MD, FACR, FSBI

Chair of NMD Committee

Staff Radiologist, Radiology Associates of Albuquerque

Professor Emeritus, University of NM

### **Gretchen Merriss**

Data Analyst, Clinical Radiologists



## **Speakers**



Lu Meyer

Sr. Quality Program Specialist, ACR

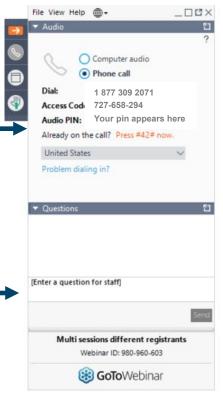


Ryan Keefer

Associate Quality Program Specialist, ACR



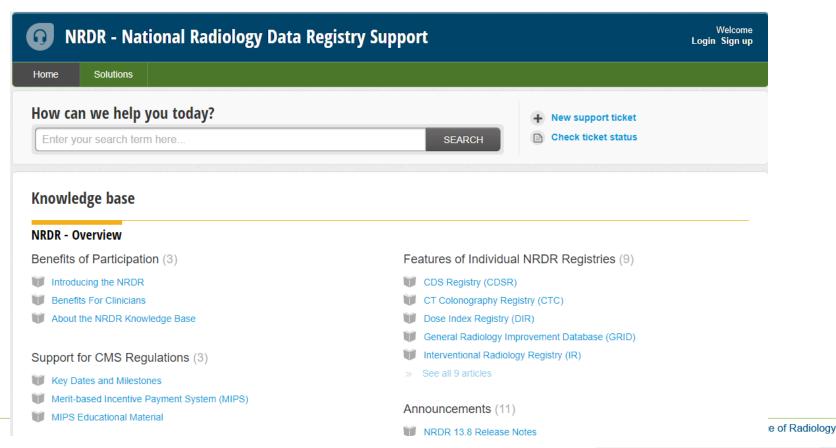
### **Disclosures**


None



### **Ask Your Questions in the Chat**

If dialing in by phone, enter #, your Audio PIN, then #


Type your question into the text field under "Questions"



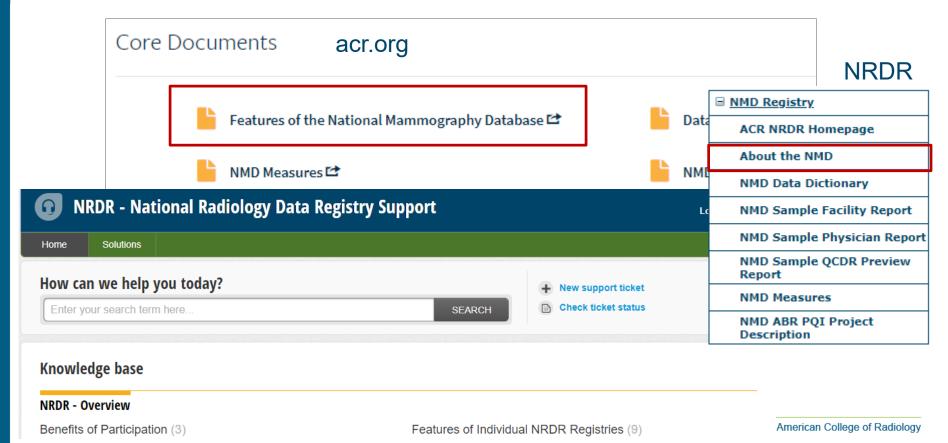


### NRDR Knowledge Base

### nrdrsupport.acr.org






# NRDR Knowledge Base - Poll

How familiar are you with the NRDR Knowledge Base?

- A. I use it often
- B. I use it occasionally
- C. I use it rarely
- D. I know about it but have never used it
- E. I have not heard about it



# NRDR Knowledge Base - Demo





### Purpose of the Registry: How are the data used?

- Monitoring facility quality and identifying opportunities for improvement
  - Identifying consistency among radiologists
- Demonstrating quality to executive leadership and payers
- Conducting research



Data Elements: Why is it important to report the data? Abnormal Interpretations and Cancers for Screening Mammography

- 1. Understand how facility performs
- 2. See how similar your facility is to other facilities
- Access data for research

January 2019 - December 2019: Comparison to all NMD facilities

|                          | Facili | Facility 100853 |        | NMD (N=205)        |  |
|--------------------------|--------|-----------------|--------|--------------------|--|
| Measure                  | Rate   | (Num-Den)       | Rate   | (Num-Den)          |  |
| All exams                |        | 9,482           |        | 3,102,964          |  |
| Recall rate              | 15.32% | (1,453/9,482)   | 10.079 | (312,616/3,102,964 |  |
| PPV1                     | 5.51%  | (43/780)        | 4.04%  | (12,638/312,616)   |  |
| PPV2                     | 22.36% | (36/161)        | 20.769 | (10,679/51,448)    |  |
| PPV3                     | 28.57% | (36/126)        | 27.799 | (10,679/38,423)    |  |
| Biopsy recommended       | 1.70%  | (161/9,482)     | 1.66%  | (51,448/3,102,964) |  |
| Biopsy performed         | 3.55%  | (337/9,482)     | 1.49%  | (46,200/3,102,964) |  |
| Biopsy result: Negative  | 69.35% | (215/310)       | 69.569 | (28,879/41,517)    |  |
| Biopsy result: Positive  | 30.65% | (95/310)        | 30.449 | (12,638/41,517)    |  |
| CDR per 1000             | 10.02  | (95/9,482)      | 4.07   | (12,638/3,102,964) |  |
| ICDR per 1000            | 8.12   | (77/9,482)      | 3.10   | (9,633/3,102,964)  |  |
| Ductal carcinoma in-situ | 18.95% | (18/95)         | 23.789 | (3,005/12,638)     |  |
| Invasive cancer          | 81.05% | (77/95)         | 76.229 | (9,633/12,638)     |  |
| Minimal cancer           | 58.97% | (23/39)         | 36.939 | (4,667/12,638)     |  |
| Nodal status: Negative   | 14.29% | (11/77)         | 21.099 | (2,032/9,633)      |  |
| Nodal status: Positive   | 5.19%  | (4/77)          | 2.96%  | (285/9,633)        |  |
| Tumor size: 1-5mm        | 6.67%  | (2/30)          | 16.179 | (566/3,501)        |  |
| Tumor size: 6-10mm       | 16.67% | (5/30)          | 32.509 | (1,138/3,501)      |  |
| Tumor size: 11-15mm      | 33.33% | (10/30)         | 23.919 | (837/3,501)        |  |
| Tumor size: 16-20mm      | 23.33% | (7/30)          | 11.179 | (391/3,501)        |  |
| Tumor size: >20mm        | 20.00% | (6/30)          | 16.259 | (569/3,501)        |  |
| Tumor stage: 0           | 40.00% | (6/15)          | 16.629 | (261/1,570)        |  |
| Tumor stage: I           | 33.33% | (5/15)          | 66.509 | (1,044/1,570)      |  |
| Tumor stage: II          | 13.33% | (2/15)          | 14.909 | (234/1,570)        |  |
| Tumor stage: III         | 13.33% | (2/15)          | 1.85%  | (29/1,570)         |  |

#### Sample NMD Facility Report



### Critical Outcomes? PPV's and CDR

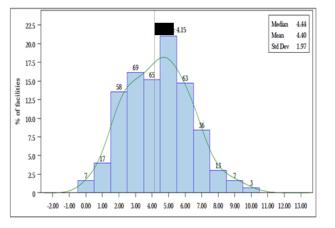
- Necessary data elements
  - Indication for exam, overall assessment (patient level), classification of lesion, cancer staging
- Cancer Detection Rate (CDR)
  - How often did you find cancers?
- Positive Predictive Values (PPV's)
  - How often are positive studies really cancer?



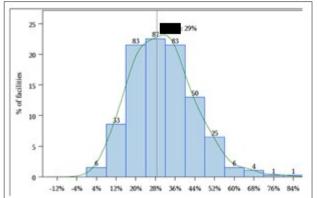
# Use Case: Quality Improvement

- Example 1 Monitoring individual physician quality
  - Data elements: BIRADS for each study
- Example 2 Tracking year to year performance
  - Data element assessment: Recall rate compare current to 1 year ago by radiologist and facility
- Example 3 Improving cancer detection and staging follow up
  - Data elements: Cancer size and node status after surgery, follow-up biopsy results – % of cancers with staging




Use Case: Demonstrating Quality to Payers and

**Healthcare Leaders** 


Example 1

 Cancer Detection Rate, recall rate

- Example 2
  - PPV's recall (PPV1), Bx recommended (PPV2), Bx done (PPV3)



**CDR** 



PPV3



### Use Case: Research Studies

- Population health disparities
  - Example: Screening Mammography in African American Women: Should screening frequency and onset be different?
  - Data elements: race, ethnicity, age, weight, patient zip code
- Appropriate age for screening
  - Example: Risk-Based Screening Mammography for Women Aged <40: Outcomes From the National Mammography Database
  - Data elements: age, availability of prior mammograms, family history of breast cancer, personal history of breast cancer, breast density
- Appropriate use of BIRADS
  - Example: <u>Cancer Yield and Patterns of Follow-up for BI-RADS Category 3</u> <u>after Screening Mammography Recall in the National Mammography</u> Database
- Tomosynthesis outcomes (future work)



### NRDR Data Access and Publications

 https://www.acr.org/Practice-Management-Quality-Informatics/Registries/Data-Access-and-Publications

| Registry | Approved NRDR Data Requests                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMD      | Frequency, outcome and compliance of BI-RADS 3 probably benign lesions                                                                                   |
| NMD      | Variability In The Use Of BI-RADS Assessment Categories: Clinical Practice versus ACR BI-RADS Atlas 5th Edition                                          |
| NMD      | Factors Associated with Rates of False Negative Results from Mammographic Screening in the NMD                                                           |
| NMD      | Screening African American women                                                                                                                         |
| NMD      | Linkage: Radiologists' characteristics and mammography facility characteristics associated with interpretive performance of screening mammography in NMD |
| NMD      | Potential Changes in Distribution of BI-RADS Breast Density Categories Following Breast Density Legislation and BI-RADS Atlas Update                     |



### Life Cycle of NMD Exam



MRN: ABC

Exam date: 1/1/2020 Indication: Screening

Assessment: 0-Addtl imaging

Other ID: ABC

Exam date: 1/1/2020 Indication: Screening

Assessment: 0-Addtl imaging



MRN: ABC

Exam date: 1/15/2020 Indication: Diagnostic

Assessment: 4-Suspicioius



Other ID: ABC

Exam date: 1/1/2020 Indication: Screening

Assessment: 0-Addtl imaging

Exam date: 1/15/2020 Indication: Diagnostic

Assessement: 4-Suspicious

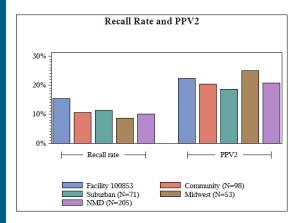


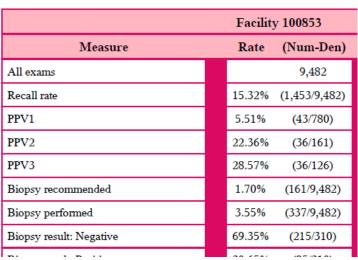
MRN: ABC

Exam date: 1/15/2020
Indication: Diagnostic
Assessment: 4-Suspicious
Classn of Lesion: Malignant

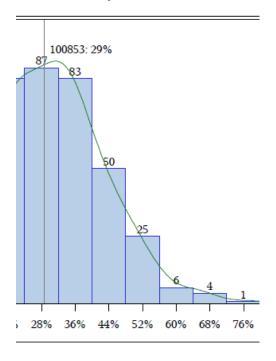


Other ID: ABC


Exam date: 1/1/2020 Indication: Screening

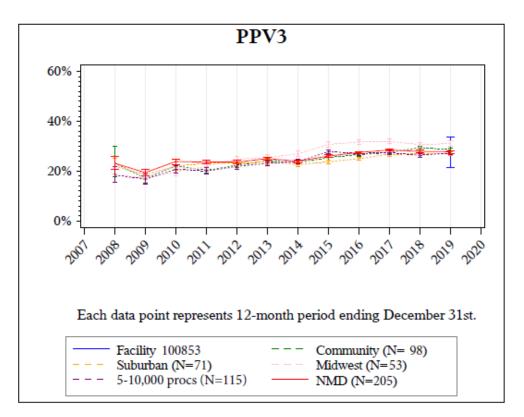

Assessment: 0-Addtl imaging

Exam date: 1/15/2020 Indication: Diagnostic Assessment: 4-Suspicious Classn of Lesion: Malignant




# Life Cycle of NMD Exam






#### Distribution of PPV3 January 2019 - December 2019





### Life Cycle of NMD Exam





# Upgrading to Version 3.0 – Diagnostic Imaging

| New Variables Collected in 3.0              |                                    |  |  |
|---------------------------------------------|------------------------------------|--|--|
| NMD file version number                     | Modality                           |  |  |
| NRDR facility ID                            | Use of tomosynthesis               |  |  |
| Laterality of audit data                    | Additional imaging                 |  |  |
| Combination examination                     | Tissue composition                 |  |  |
| Standard screening mammo and US imaging     | Amount of fibroglandular tissue    |  |  |
| Physician identifier 2 and 3                | Background parenchymal enhancement |  |  |
| Physician-level assessment - left and right |                                    |  |  |
| breast and patient-level                    | Histology grade                    |  |  |
| First examination ever                      | Primary tumor                      |  |  |
| Time since previous examination             | Regional lymph nodes               |  |  |
| Family history of breast cancer, other than |                                    |  |  |
| first-degree relative                       | Distant metastases                 |  |  |
| History of ovarian cancer                   | Nodes removed                      |  |  |
| Previous biopsy - proven hyperplasia with   |                                    |  |  |
| cellular atypia                             | Nodes positive                     |  |  |
| Previous lobular carcinoma in situ          |                                    |  |  |



### Certified Software Partners for 3.0

Certified Software Partners Approved for NMD 3.0/3.1/3.2



Certified Software Partners Approved Conditionally for NMD 3.0/3.1/3.2







### 2.0 to 3.0 Transition Process

- Talk with your team about benefits of transitioning
- Contact your vendor to find out what is required
- Set up with vendor may be required before you can start sending 3.0 data to NMD



# Upgrading to Version 3.0 – Poll 1

How likely are you to move to version 3.0 in the next 12 months?

- A. Likely
- B. I'm not sure
- C. Unlikely
- D. I already use Version 3.0/3.1/3.2



# Upgrading to Version 3.0 – Poll 2

What is your biggest barrier to moving to version 3.0? (Select all that apply.)

- A. Expense
- B. Time/data input burden
- C. Lack of expected return on investment
- D. Lack of institution support
- E. Systems/software issues



# Preventing Common Data Errors

- Missing NPIs
- Patient ID conflicts
  - Patient has multiple IDs
  - Different patients have the same ID
- Dates not in valid date format (mm/dd/yyyy)
- Periods/commas in name fields



### Value of "Good" Data

- Garbage in, garbage out
- Incomplete or erroneous data means:
  - Reports unable to provide facility measures
  - Reports provide inaccurate data
- Examples pathology
  - What was the cancer size on the surgical pathology report?
  - What was the axillary lymph node status at surgery?



## **Engaging with NMD**

- NRDR Knowledge Base
  - https://nrdrsupport.acr.org/support/home
  - FAQ of questions from today will be sent after webinar
- Provide NMD feedback through our survey!
  - https://app.smartsheet.com/b/form/7613389ae5d947b2a2ae0c9877 980e7f
- Join us for Boot Camp Part 2: NMD Data Submission and Reports on August 26 @ 2pm EDT
  - Register: https://attendee.gotowebinar.com/register/4835794384525407248



# **CE Credit Claiming**

CE Credit claiming instructions will be sent to you via email from <a href="mailto:alacount@acr.org">alacount@acr.org</a> following the activity, by Friday, September 4, 2020. Please click on the link and follow the instructions in the email to claim your credit, complete the activity evaluation, and receive your certificate. All evaluations and credit claiming requests must be completed no later than 11:59 EDT, Wednesday, November 26, 2020.

For questions regarding the credit claiming of this activity, please contact Alexis LaCount: alacount@acr.org.